Conditional Random Fields for Object Recognition
نویسندگان
چکیده
We present a discriminative part-based approach for the recognition of object classes from unsegmented cluttered scenes. Objects are modeled as flexible constellations of parts conditioned on local observations found by an interest operator. For each object class the probability of a given assignment of parts to local features is modeled by a Conditional Random Field (CRF). We propose an extension of the CRF framework that incorporates hidden variables and combines class conditional CRFs into a unified framework for part-based object recognition. The parameters of the CRF are estimated in a maximum likelihood framework and recognition proceeds by finding the most likely class under our model. The main advantage of the proposed CRF framework is that it allows us to relax the assumption of conditional independence of the observed data (i.e. local features) often used in generative approaches, an assumption that might be too restrictive for a considerable number of object classes.
منابع مشابه
Hidden-state Conditional Random Fields
We present a discriminative latent variable model for classification problems in structured domains where inputs can be represented by a graph of local observations. A hidden-state Conditional Random Field framework learns a set of latent variables conditioned on local features. Observations need not be independent and may overlap in space and time. We evaluate our model on object detection and...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملGeneric Object Recognition using CRF by Incorporating BoF as Global Features
Generic object recognition by a computer is strongly required in various fields like robot vision and image retrieval in recent years. Conventional methods use Conditional Random Field (CRF) that recognizes the class of each region using the features extracted from the local regions and the class co-occurrence between the adjoining regions. However, there is a problem that CRF tends to fall int...
متن کاملConditional Random Fields for Pattern Recognition Applied to Structured Data
Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be...
متن کاملObject Recognition with Latent Conditional Random Fields
In this thesis we present a discriminative part-based approach for the recognition of object classes from unsegmented cluttered scenes. Objects are modelled as flexible constellations of parts conditioned on local observations. For each object class the probability of a given assignment of parts to local features is modelled by a Conditional Random Field (CRF). We propose an extension of the CR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004